
World Transactions on Engineering and Technology Education © 2006 UICEE
Vol.5, No.1, 2006

 179

INTRODUCTION AND MOTIVATION

Increasing the size and complexity of software systems, rising
cost of administering complex systems, lack of sufficient
supply of trained system administrators, numerous system
failures and outages caused by human errors, and major
difficulties in dealing with changes that affect the development,
integration, deployment and management of complex systems
make it impossible to rely on human intervention and
administration.

In order to address this key challenge, IBM Senior Vice President
and Director of Research, Paul Horn, introduced the vision for the
new paradigm of autonomic computing in his keynote speech at
the National Academy of Engineering Conference, held at
Harvard University in March 2001. He stated:

[autonomic computing systems are] computer
systems that regulate themselves much in the same
way our autonomic nervous system regulates and
protects our bodies.

Autonomic computing has been derived from the human
body’s autonomic nervous system, which governs human
body’s involuntary vital functions, such as breathing,
respiration, heart beat (rate) and body temperature. Inspired by
the human body’s self-regulatory nervous system, an
autonomic system is self-aware and able to self-manage.

Our bodies have great availability. I have soft errors
all the time: my memory fails once in a while, but I
don’t crash. My whole body doesn’t shut down when
I cut a finger.

This analogy was made by IBM Vice President of Personal
Systems and Storage and Director of IBM’s Almaden Research
Centre, Robert Morris.

The new paradigm of autonomic computing shifts the
fundamental definition of the technology age from one of
computing to another defined by data. Access to data from
multiple, distributed sources in addition to traditional
centralised storage devices will allow users to transparently
access information when and where they need it. Autonomic
computing requires the industry to change its focus on
processing speed and storage to developing distributed
networks, which are mainly self-managing, self-diagnostic and
transparent to the user [1].

Autonomic computing is crucial to the success of pervasive
computing – the emerging next generation of computing.
Autonomic computing systems are in high demand in a wide
variety of mission critical systems in important application
domains, such as healthcare, elderly care, defence, homeland
security, space and planetary exploration, air traffic control,
transportation, finance, e-commerce, e-business, manufacturing
and many others that affect safety and security.

INTEGRATING AUTONOMIC COMPUTING INTO THE
SOFTWARE ENGINEERING CURRICULUM

It is critically important to integrate the new paradigm of
autonomic computing into software engineering education so
that software engineers will have a good understanding of
autonomic computing, as well as the technical and professional
skills and experience to deal with the associated challenges and
opportunities.

The suggested key strategies to integrate autonomic computing
into software engineering education include the following:

• Redesigning the software engineering curriculum to

incorporate autonomic computing into the curriculum;
• Systematically integrating autonomic computing research

into education;

Expanding the horizons of software engineering education: integrating autonomic
computing into the curriculum

Gilda Pour

San José State University

San José, United States of America

ABSTRACT: Increasing size and complexity of software systems, rising cost of administering complex systems, lack of sufficient
supply of trained system administrators, numerous system failures and outages caused by human errors, and major difficulties in
dealing with changes that affect development, integration, deployment and management of complex systems make it impossible to
rely on human intervention and administration. This has motivated the development of a new paradigm of autonomic computing.
Inspired by the human body’s self-regulatory nervous system, autonomic computing systems will be self-aware and able to self-
manage (ie self-configure, self-optimise, self-heal and self-protect). It is envisioned that autonomic computing systems monitor the
environment and resources to be managed, analyse the collected information, and use it to develop and execute plans to manage the
system and the resources. Autonomic computing is crucial to the success of pervasive computing – the emerging next-generation
computing. This calls for software engineering education reform to integrate autonomic computing into the curriculum. In this
article, the author presents a set of key strategies for such an education reform.

 180

• Providing students with applied and experimental research
opportunities;

• Cultivating industry-academic partnerships in research
and education;

• Providing institutional support for multidisciplinary
collaborations in research and education;

• Fostering life-long learning;
• Systematically updating the contents and structure of

software engineering curricula.

Table 1 presents the list of suggested key topics for
incorporating autonomic computing into the software
engineering curriculum and redesigning the curriculum.

Due to a rapidly evolving and highly diversified area of
autonomic computing, it is critically important to
systematically integrate research into education in order to
increase the effectiveness of students’ learning experiences.
Engaging students in applied and experimental research
provides major educational opportunities for software
engineering students to acquire invaluable experience that
cannot be gained by attending lectures and reading technical
articles [2-7].

Thus, it is crucial to provide students with opportunities to
experience the activities required for developing innovative
engineering solutions and building demonstration prototypes.
Such a beneficial experience helps students become familiar
with and appreciate applied and experimental research that is
behind research papers that present software prototype
development and case studies.

In order to significantly enhance the opportunities for students
to become familiar with software engineering practice, it is
necessary to cultivate industry-academic partnerships in
research and education. This will offer benefits to students by
providing industrial experience with project sponsors and
enhance students’ hands-on experiences, as well as their
technical competences and skills.

Furthermore, the multidisciplinary nature of autonomic
computing requires multidisciplinary collaborations in both
research and educational activities, which are necessary for
success in developing autonomic systems. Therefore, it is
required that academic institutions foster multidisciplinary
collaborations in research and education to allow students,
faculty and other professionals across various fields to engage
in collaborative, multidisciplinary projects. This will also help
students learn and enhance their engineering knowledge and
skills, as well as their professional skills (eg teamwork, written
and verbal communications, etc).

On the one hand, collaborative multidisciplinary projects
require additional time and effort to ensure productive
cooperation among those involved. However, funding
structures in academia traditionally do not provide necessary
institutional support for multidisciplinary collaborations,
particularly when cooperation among different departments and
colleges is needed.

Thus, it is crucial that academic institutions make necessary
changes to their funding structures and faculty evaluation
criteria so as to provide institutional support and funds for such
multidisciplinary collaborations. Cultural changes in this
regard are also needed in academia.

The nature of software engineering also requires software
engineers to be truly life-long learners and keep their technical
knowledge, competences and skills current throughout their
careers. Autonomic computing is essential to the success of
pervasive computing. Thus, life-long learning becomes even
more crucial in a pervasive computing world.

To help graduates become self-motivated and life-long
learners, it is critical to provide students with opportunities to
acquire both the awareness of the importance of life-long
learning and the knowledge, skills and abilities to engage in
life-long learning.

Last, but not least, it is critically important to make the
curriculum flexible and responsive to change, and also to
systematically update the contents and structure of the software
engineering curriculum to ensure it provides the most effective
learning opportunities for software engineering students in the
key area of software engineering for autonomic computing.

CONCLUDING REMARKS

The vision for autonomic computing cannot be implemented if
software engineering education is not reformed to properly
prepare graduates of software engineering programmes for
autonomic computing. In this paper, the author discusses the
necessity of integrating autonomic computing into software
engineering curricula and presents a set of suggested key
strategies for integrating autonomic computing into software
engineering education.

The suggested strategies include redesigning software
engineering curriculum to incorporate autonomic computing
into the curriculum; systematically integrating autonomic
computing research into education; providing students with
applied and experimental research opportunities; cultivating
industry-academic partnerships in research and education;
providing institutional support for multidisciplinary
collaborations in research and education; fostering life-long
learning; and systematically updating the contents and structure
of software engineering curricula to better prepare students for
a challenging career in software engineering.

REFERENCES

1. Pour, G., Pervasive computing reforming software

engineering education. World Trans. on Engng. and
Technology Educ., 2, 3, 357-360 (2003).

2. Pour, G., Agent-Oriented Software Engineering (AOSE):
its emergence as a cornerstone of enterprise software
engineering education. World Trans. on Engng. and
Technology Educ., 2, 2, 225-228 (2003).

3. Pour, G., Component-Based development refining the
blueprint of software engineering education. World Trans.
on Engng. and Technology Educ., 2, 1, 45-48 (2003).

4. Pour, G., Engineering curriculum reform to introduce
students to security and privacy in the Internet era. World
Trans. on Engng. and Technology Educ., 4, 2, 285-288
(2005).

5. Pour, G., Multi-agent autonomic architectures for quality
control systems. Pervasive Computing (2006).

6. Pour, G., Exploring multi-agent autonomic architectures
for telehealth systems. Telehealth (2006).

7. Pour, G., Exploring multi-agent architectures for
autonomic systems. Pervasive Computing (2005).

 181

8. Kephart, J. and Chess, D., The vision of
autonomic computing. IEEE Computer, 36, 1, 41-50
(2003).

9. Waldrop, M., Autonomic Computing: the
Technology of Self-Management (2003),
http://www.thefutureofcomputing.org/Autonom2.pdf

10. Carnegie Mellon University, Self-Securing Storage,
http://www.pdl.cmu.edu/Secure/S4.html

11. Carnegie Mellon University, Self-Securing Devices,
http://www.pdl.cmu.edu/Secure/S4.html

12. Berkeley University, OceanStore, http://oceanstore.cs.
berkeley.edu

13. Berkeley University, Recovery-Oriented Computing,
http://roc.cs.berkeley.edu

14. Cornell University, Astrolabe, http://www.cs.cornell.edu/
ken/Astrolabe.pdf

15. Georgia Institute of Technology, Qfabric,
http://wwwstatic.cc.gatech.edu/systems/projects/ELinux/

16. IBM Research Projects, http://www.research.ibm.com/
autonomic/research/projects.html#ibmresearch

Table 1: The key topics to be incorporated into the software engineering curriculum.

Introduction &
Fundamental
Concepts of
Autonomic
Computing

It is envisioned that an autonomic computing system:

• Monitors the environment and resources to be managed, analyses the collected information, and uses it
to develop and execute plans to manage the system and resources;

• Has the ability to manage and dynamically adapt itself to changes in accordance with the policies and
standards in an application domain, and it can perform such activities based on the situations that the
system observes or senses in its environment.

The computing paradigm will change from one based on computational power to one driven by data. The
way computing performance is measured will change from processor speed to the immediacy of the
response. Individual computers will become less important than more granular and dispersed computing
attributes. The economics of computing will evolve to better reflect actual usage – what IBM calls e-
sourcing [1].
Autonomic computing requires development of computer systems, software, storage and support to
exhibit:

• Accessibility: System’s availability to provide service as required by the nature of the autonomic
system;

• Flexibility: System’s ability to filter and examine data via a platform- and device-agnostic approach;
• Transparency: System’s ability to perform tasks and adapt to a user’s needs while shielding the user

from the complexity of the system.
Self-Awareness in
Autonomic
Computing

System’s ability to know its environment and the context surrounding its activity, and act accordingly. This
requires the system to find and generate rules for its interaction with other systems (eg negotiating with
other systems about the use of resources) and adapting to its environment [1][8-12].

Self-Management
in Autonomic
Computing

Self-Configuration: System’s ability to automatically and seamlessly adapt itself to dynamically changing
environments and conditions by changing its own configuration (ie configuring and reconfiguring its
components based on high-level policies, under varying conditions and without service disruption).

 Self-Optimisation: System’s ability to monitor its state and performance; proactively adjust itself to
improve its performance and maximise the use of resources to ensure predetermined system goals are achieved.

 Self-Healing: System’s ability to automatically and continuously detect, diagnose, act/react to prevent any
disruption, and recover from errors, damages and routine and extraordinary events that may cause some
parts of the system to malfunction, or the system to fail.

 Self-Protecting: System’s ability to automatically and continuously detect, identify, protect itself against
various types of attacks and prevent system-wide failures to maintain overall system security and integrity.
Autonomic architectures [1][8-11].
Autonomic servers.
Autonomic networks:

• Completely transparent to users;
• Entirely heterogeneous environment, platform agnostic and dependent on open standards.
Autonomic intelligent middleware:

• The core of autonomic computing system;
• Must support all modes of access to it (eg cell phones, PDAs, Web-connected appliances, embedded

devices, PCs);
• Is intended to support transparent access to the autonomic system. The servers that make up this

system will be more cellular and distributed, similar to the human nervous system. There will be
systems and networks of single-chip cells that integrate processors, memory and communications.
These cellular architectures will make it feasible for the computer to get its power out to where the
data is, thereby eliminating some of the latency characteristics of current architectures.

Autonomic storage systems.
Autonomic federated systems.
Autonomic capabilities in access devices.

Autonomic
Computing Systems
[1][8-10]

Autonomising legacy systems.

 182

Open Standards &
Technologies for
Autonomic
Computing

Open standards and new technologies are necessary for autonomic systems to interact effectively, to enact
pre-determined business policies more effectively, and to be able to protect themselves and heal
themselves with a minimal dependence on traditional IT support [1][8][9].

Multidisciplinary collaborations:

• Developing autonomic computing systems is overwhelmingly difficult as it requires extensive
multidisciplinary collaborations;

• Collaborations among not only researchers from multiple technical and scientific disciplines, but also
different companies and research and academic institutions to share a sense of urgency and purpose
are required [1][8][9].

Development of open standards and new technologies for autonomic computing
Research challenges of autonomic computing:

• Development;
• Integration;
• Deployment;
• Management.

The Challenges of
Autonomic
Computing

Emerging new business models
Case Studies and
Examples

• Carnegie Mellon University: Self-Securing Storage [13];
• Carnegie Mellon University: Self-Securing Devices [14];
• NASA, SJSU: Multi-Agent Autonomic Architectures [8-10];

(co-sponsors: IBM, HP):

• Berkeley University: OceanStore [15];
• Berkeley University: Recovery-Oriented Computing [16];
• Cornell University: Astrolabe [17];
• Georgia Institute of Technology: Qfabric [18];
• IBM Autonomic Computing Research Projects [19].

